All about civil construction knowledge- PARAM VISIONS

How to calculate the moment of inertia of a T-section?/ Finding MI of T-section along centroidal axes.

Let us calculate the moment of inertia along the centroidal axis for the T-section as shown below.




Given data:

Width of flange = b= 120mm.

Depth of flange =d =25mm.

Depth of T - section = 150mm.

Web width = 25mm.


First, you have to find the area of the web & flange of the T-section separately. The center of gravity of the T-section should be calculated.

All these steps are already covered in a separate article as linked below.

👀.  How to calculate the center of gravity of a T -section? 


Area A1 of flange = 3000 mm2

Area A2 of web 3125 mm2

CG of flange Y1 = 137.5mm.

CG of web Y2 = 62.5mm.

CG of T-section Ӯ = 99.23mm.

Note: All the Values are taken from the above-linked article.




1. Moment of inertia of T-section about X-axis

             Iₓₓ = [Ixx1 + I xx2]

Where Ixx1 👉 Moment of inertia of  flange about X-axis

            Ixx2 👉 Moment of inertia of web about X-axis.

Let us draw the local axes X1X1 & X2X2 passing through the CG of flange & web respectively as shown below.





As these two axes are parallel to the X-axis, we shall use the parallel axis theorem to calculate MI.

       Ixx1 = [IG1 + A1h1²]

       Where IG1 is the MI of the flange part about its local X1-axis.

     The formula for MI of rectangle = IG1= [ bd³ ÷12]

    So, Ixx1 = [( bd³ ÷12 )+A1h1²]

    Here, b = width of the flange = 120mm.

              d= depth of flange = 25mm.

             h1= [Y1 - Ӯ]

                = [137.5mm. - 99.23mm.]

                = 38.27mm.


 Ixx1 = [( bd³ ÷12 )+A1h1²]

 Ixx1 = [( 120×25³ ÷12 )+ {3000 × (38.27)²}]

        = [(1,56,250) + {43,93,778.70}]

        = 45,50,028.70 mm4

        = 4.55× 10⁶mm4


Similarly,

 Ixx2 = [IG2 + A2h2²]

 Where IG2 is the MI of the web part about its local X2-axis.

The formula for MI of rectangle = IG2= [ bd³ ÷12]

    So, Ixx2 = [( bd³ ÷12 )+A2h2²]

    Here, b = width of the web = 25mm.

              d= depth of web = 125mm.

             h2= [ Ӯ - Y2]

                = [99.23mm.- 62.5mm.]

                = 36.73mm.


 Ixx2 = [( bd³ ÷12 )+A2h2²]

 Ixx2 = [( 25×125³ ÷12 )+ {3125 × (36.73)²}]

        = [(40,69,010.42) + {42,15,915.31}]

        = 82,84,925.77 mm

        = 8.285× 10⁶mm


Iₓₓ = [Ixx1 + I xx2]
Iₓₓ = [{ 4.55× 10⁶mm  +  8.285× 10⁶mm ]

Iₓₓ = 12.835 × 10mm


2. Moment of inertia of T-section about Y-axis

              Iyy = [Iyy1 + I yy2]

Where Iyy👉 Moment of inertia of  flange about Y-axis

           Iyy👉 Moment of inertia of web about Y-axis.

As the CG of the web & flange lies over the centroidal Y-axis, there is no need to apply the parallel axis theorem.

Therefore, 

 Iyy1 = [ db³ ÷12]

Here,    b = width of the flange = 120mm.

             d= depth of flange = 25mm.

     Iyy1 = [ 25×120³ ÷12]

            = 36,00,000mm


Iyy2 = [ db³ ÷12]

Here, b = width of the web = 25mm.

          d= depth of  web = 125mm.

     Iyy2 = [ 125×25³ ÷12]

            = 1,62,760.42mm


Iyy = [Iyy1 + I yy2]
       = [ 36,00,000 + 1,62,760.42]
       = 3,762,760.42mm
Iyy = 3.763 × 10mm


Thank you for going through these calculation steps. Have a good day 😄.
Share:

No comments:

Post a Comment

Translate

Blog Archive

popular posts

Recent Posts

Google search