All about civil construction knowledge- PARAM VISIONS

How to calculate the moment of inertia of an L-section?/ Finding MI of angle section about centroidal axes.

  Let us calculate the moment of inertia about the centroidal axes of the L-section as shown below.




Given data:

Depth of L-section = 75mm.

Width of L-section = 75mm.

Thickness of L-section = 8mm.

First, we have to find the area of the rectangles ABCD & BEFG of the L-section separately. The center of gravity of the L-section should be calculated.



All these steps are already covered in a separate article as linked below.

👀.  How to find the center of gravity of an L-section?


Note: All the below-given values are taken from the above-linked article.

Area A1 of rectangle ABCD = 536 mm2

Area A2 of rectangle BEFG = 600 mm2

CG of rectangle ABCD from reference axis XX= Y1 = 41.5mm.

CG of rectangle BEFG from reference axis XX= Y2 = 4mm.

CG of rectangle ABCD from reference axis YY= X1 = 4mm.

CG of rectangle BEFG from reference axis YY= X2 = 37.5mm.

CG of L-section  from reference axis XX = Ӯ = 21.69mm.

CG of L-section  from reference axis YY = = 21.69mm.





1. Moment of inertia of L-section about X-axis

             Iₓₓ = [Ixx1 + Ixx2]

Where Ixx1 👉 Moment of inertia of rectangle ABCD about X-axis

            Ixx2 👉 Moment of inertia of rectangle BEFG about X-axis.

            

Let us draw the local axes X1X1 & X2X2 passing through the CG of rectangles ABCD & BEFG respectively as shown below.





As these two axes are parallel to the X-axis, we shall use the parallel axis theorem to calculate MI.

  a.  Ixx1 = [IG1 + A1h1²]

       Where IG1 is the MI of the rectangle ABCD about its local X1-axis.

     The formula for MI of rectangle = IG1= [ bd³ ÷12]

    So, Ixx1 = [( bd³ ÷12 )+A1h1²]

    Here, b = width of the rectangle ABCD = 8mm.

              d= depth of rectangle ABCD = [75mm. - 8mm.] = 67mm.

             h1= [Y1 - Ӯ]

                = [37.5mm. - 21.69mm.]

                = 15.81mm.


 Ixx1 = [( bd³ ÷12 )+A1h1²]

 Ixx1 = [( 8×67³ ÷12 )+ {536 × (15.81)²}]

        = [(200,508.67) + {133,976.47}]

        = 334,485.14 mm

        = 3.345× 10mm


Similarly,

b.  Ixx2 = [IG2 + A2h2²]

 Where IG2 is the MI of the rectangle BEFG about its local X2-axis.

The formula for MI of rectangle = IG2= [ bd³ ÷12]

    So, Ixx2 = [( bd³ ÷12 )+A2h2²]

    Here, b = width of the rectangle BEFG= 75mm.

              d= depth of  rectangle BEFG = 8mm.

             h2= [ Ӯ -Y2]

                = [21.69mm.- 4mm.]

                = 17.69mm.


 Ixx2 = [( bd³ ÷12 )+A2h2²]

 Ixx2 = [( 75×8³ ÷12 )+ {600 × (17.69)²}]

        = [(3200) + {187,761.66}]

        = 190,961.66 mm

        = 1.91× 10mm

Iₓₓ = [Ixx1 + I xx2 ]
Iₓₓ = [3.345× 10mm⁴ + 1.91× 10mm]

Iₓₓ = 5.255 × 10mm


1. Moment of inertia of L-section about Y-axis

             Iyy = [Iyy1 + Iyy2]

Where Iyy👉 Moment of inertia of rectangle ABCD about Y-axis

            Iyy👉 Moment of inertia of rectangle BEFG about Y-axis.

            

Let us draw the local axes Y1Y1 & Y2Y2 passing through the CG of rectangles ABCD & BEFG respectively as shown below.



 As these two axes are parallel to the Y-axis, we shall use the parallel axis theorem to calculate MI.

 a.  Iyy1 = [IG1 + A1h1²]

       Where IG1 is the MI of the rectangle ABCD about its local Y1-axis.

     The formula for MI of rectangle = IG1= [ db³ ÷12]

    So, Iyy1 = [( db³ ÷12 )+A1h1²]

    Here, b = width of the rectangle ABCD = 8mm.

              d= depth of rectangle ABCD = [75mm. - 8mm.] = 67mm.

             h1= [  艾- X1 ]

                = [ 21.69mm. - 4mm.]

                = 17.69mm.


 Iyy1 = [( db³ ÷12 )+A1h1²]

 Iyy1 = [( 67×8³ ÷12 )+ {536 × (17.69)²}]

        = [(2858.67) + {167,733.75}]

        = 170,592.42 mm

        = 1.71× 10mm


Similarly,

b.  Iyy2 = [IG2 + A2h2²]

 Where IG2 is the MI of the rectangle BEFG about its local Y2-axis.

The formula for MI of rectangle = IG2= [ db³ ÷12]

    So, Iyy2 = [( db³ ÷12 )+A2h2²]

    Here, b = width of the rectangle BEFG= 75mm.

              d= depth of  rectangle BEFG = 8mm.

             h2= [ X2 - ]

                = [37.5mm. - 21.69mm.]

                = 15.81mm.


 Iyy2 = [( db³ ÷12 )+A2h2²]

 Iyy2 = [( 8×75³ ÷12 )+ {600 × (15.81)²}]

        = [(281,250) + {149,973.66}]

        = 431,223.66 mm

        = 4.31× 10mm

Iyy = [Iyy+ I yy2 ]
Iyy = [1.71× 10mm+ 4.31× 10mm]

Iyy = 6.02 × 10mm


Thank you for going through these calculation steps. Have a good day 😄.


Share:

No comments:

Post a Comment

Translate

Blog Archive

popular posts

Recent Posts

Google search