All about civil construction knowledge- PARAM VISIONS

How to calculate the moment of inertia of an I-section?/ Finding MI of unsymmetrical I-section along centroidal axes.

Let us calculate the moment of inertia along the centroidal axis for the I-section as shown below.



Given data:

Width of top flange = 75mm.

Thickness of top flange = 16mm.

Depth of web = 75mm.

 Width of web = 16 mm.

Width of bottom flange = 100mm.

Thickness of bottom flange = 20mm.


First, you have to find the area of the web & flange of the I-section separately. The center of gravity of the I-section should be calculated.

All these steps are already covered in a separate article as linked below.

👀.  How to find the center of gravity of an I -section?

Area A1 of top flange = 1200 mm2

Area A2 of web = 1200 mm2

Area A3 of bottom flange =2000 mm2

CG of top flange Y1 = 103mm.

CG of web Y2 = 57.5mm.

CG of bottom flange Y3 = 10mm.

CG of I-section Ӯ = 48.32mm.

Note: All the Values are taken from the above-linked article.



1. Moment of inertia of I-section about X-axis

             Iₓₓ = [Ixx1 + Ixx2 Ixx3]

Where Ixx1 👉 Moment of inertia of  top flange about X-axis

            Ixx2 👉 Moment of inertia of web about X-axis.

            Ixx3 👉 Moment of inertia of  bottom flange about X-axis

Let us draw the local axes X1X1, X2X2, & X3X3 passing through the CG of web & flange as shown below.



As all these three axes are parallel to the X-axis, we shall use the parallel axis theorem to calculate MI.

  a.  Ixx1 = [IG1 + A1h1²]

       Where IG1 is the MI of the top flange part about its local X1-axis.

     The formula for MI of rectangle = IG1= [ bd³ ÷12]

    So, Ixx1 = [( bd³ ÷12 )+A1h1²]

    Here, b = width of the top flange = 75mm.

              d= depth of top flange = 16mm.

             h1= [Y1 - Ӯ]

                = [103mm. - 48.32mm.]

                = 54.68mm.


 Ixx1 = [( bd³ ÷12 )+A1h1²]

 Ixx1 = [( 75×16³ ÷12 )+ {1200 × (54.68)²}]

        = [(25,600) + {3,587,882.88}]

        = 3,613,482.88 mm4

        = 3.613× 10⁶mm


Similarly,

b.  Ixx2 = [IG2 + A2h2²]

 Where IG2 is the MI of the web part about its local X2-axis.

The formula for MI of rectangle = IG2= [ bd³ ÷12]

    So, Ixx2 = [( bd³ ÷12 )+A2h2²]

    Here, b = width of the web = 16mm.

              d= depth of web = 75mm.

             h2= [ Y2 - Ӯ]

                = [57.5mm.- 48.32mm.]

                = 9.18mm.


 Ixx2 = [( bd³ ÷12 )+A2h2²]

 Ixx2 = [( 16×75³ ÷12 )+ {1200 × (9.18)²}]

        = [(562,500) + {101,126.88}]

        = 663,626.88 mm

        = 0.664× 10⁶mm


c. Ixx3 = [IG3 + A3h3²]

 Where IG3 is the MI of the bottom flange part about its local X3-axis.

The formula for MI of rectangle = IG3= [ bd³ ÷12]

    So, Ixx3 = [( bd³ ÷12 )+A3h3²]

    Here, b = width of the bottom flange = 100mm.

              d= depth of bottom flange = 20mm.

             h3= [ Ӯ - Y3]

                = [ 48.32mm. - 10mm.]

                = 38.32mm.


 Ixx3 = [( bd³ ÷12 )+A3h3²]

 Ixx3 = [( 100×20³ ÷12 )+ {2000 × (38.32)²}]

        = [(66,666.67) + {2,936,844.80}]

        = 3,003,511.47 mm

        = 3.0× 10⁶mm



Iₓₓ = [Ixx1 + I xx2 + I xx3]
Iₓₓ = [{ 3.613× 10⁶mm  + 0.664× 10⁶mm  +  3.0× 10⁶mm ]

Iₓₓ = 7.277 × 10mm


2. Moment of inertia of I-section about Y-axis

              Iyy = [Iyy1 + [Iyy2 + I yy3]

Where Iyy👉 Moment of inertia of  top flange about Y-axis

           Iyy👉 Moment of inertia of web about Y-axis.

           Iyy3 👉 Moment of inertia of  bottom flange about Y-axis

As the CG of web & flange lies over the centroidal Y-axis, there is no need to apply the parallel axis theorem.

Therefore, 

a.  Iyy1 = [ db³ ÷12]

Here,    b = width of the top flange = 75mm.

             d= depth of top flange = 16mm.

     Iyy1 = [ 16×75³ ÷12]

            = 562,500mm


b.  Iyy2 = [ db³ ÷12]

Here, b = width of the web = 16mm.

          d= depth of  web = 75mm.

     Iyy2 = [ 75×16³ ÷12]

            = 25,600mm


 c. Iyy3 = [ db³ ÷12]

              b = width of the bottom flange = 100mm.

             d= depth of bottom flange = 20mm.

        Iyy3 = [ 20 ×100³ ÷12]

               = 1,666,666.67mm


Iyy = [Iyy1 Iyy2 + I yy3]
       = [ 562,500 + 25,600 + 1,666,666.67]
       = 2,254,766.67mm
Iyy = 2.254 × 10mm


Thank you for going through these calculation steps. Have a good day 😄.

Share:

No comments:

Post a Comment

Translate

Blog Archive

popular posts

Recent Posts

Google search