All about civil construction knowledge- PARAM VISIONS

How to calculate the moment of inertia of a C-section?/ Finding MI of channel section about centroidal axes.

 Let us calculate the moment of inertia about the centroidal axis for the C-section as shown below.


Given data:

Depth of C-section = 250mm.

Width of C-section = 80mm.

Thickness of C-section = 10mm.

First, you have to find the area of the rectangle ABCD, BEFG, & EHIJ, of the C-section. The center of gravity of the C-section should be calculated.



All these steps are already covered in a separate article as linked below.

👀.  How to find the center of gravity of a C-section?

Area A1 of rectangle ABCD = 800 mm2

Area A2 of rectangle BEFG= 2300 mm2

Area A3 of rectangle EHIJ =800 mm2

CG of rectangle ABCD  X1 = 40mm.

CG of  rectangle BEFG  X2 = 5mm.

CG of rectangle EHIJ X3 = 40mm.

CG of C-section   = 19.36mm.

Note: All the values are taken from the above-linked article.




1. Moment of inertia of C-section about X-axis

             Iₓₓ = [Ixx1 + Ixx2 +  Ixx3]

Where Ixx1 👉 Moment of inertia of  rectangle ABCD about X-axis

            Ixx2 👉 Moment of inertia of rectangle BEFG about X-axis.

            Ixx3 👉 Moment of inertia of  rectangle EHIJ about X-axis

Let us draw the local axes X1X1, X2X2, & X3X3 passing through the CG of rectangles ABCD, BEFG, & EHIJ as shown below.




From the above drawing,

Y1 = [depth of rectangle EHIJ + depth of rectangle BEFG + 1/2 × depth of rectangle ABCD]

      = [10mm. + 230mm. +  1/2 × 10mm.]

     = 245mm.

Y2 = [depth of rectangle EHIJ +  1/2 × depth of rectangle BEFG ]

      = [10mm. +  1/2 × 230mm.]

      = 125mm.

As the local Y2 axis overlaps Y-axis, Ӯ = Y2 =125mm.

Y3 =  [1/2 × depth of rectangle EHIJ]

        = [1/2 × 10mm.]

        = 5mm.


As all these three axes are parallel to the X-axis, we shall use the parallel axis theorem to calculate MI.

  a.  Ixx1 = [IG1 + A1h1²]

       Where IG1 is the MI of the rectangle ABCD about its local X1-axis.

     The formula for MI of rectangle = IG1= [ bd³ ÷12]

    So, Ixx1 = [( bd³ ÷12 )+A1h1²]

    Here, b = width of the rectangle ABCD = 80mm.

              d= depth of rectangle ABCD = 10mm.

             h1= [Y1 - Ӯ]

                = [245mm. - 125mm.]

                = 120mm.


 Ixx1 = [( bd³ ÷12 )+A1h1²]

 Ixx1 = [( 80×10³ ÷12 )+ {800 × (120)²}]

        = [(6,666.67) + {11,520,000}]

        = 11,526,666.67 mm4

        = 11.527× 10⁶mm


Similarly,

b.  Ixx2 = [IG2 + A2h2²]

 Where IG2 is the MI of the rectangle BEFG about its local X2-axis.

The formula for MI of rectangle = IG2= [ bd³ ÷12]

    So, Ixx2 = [( bd³ ÷12 )+A2h2²]

    Here, b = width of the rectangle BEFG = 10mm.

              d= depth of rectangle BEFG = 230mm.

             h2= 0

             As the local X2-axis overlaps X-axis, the value of h2 becomes zero.


 Ixx2 = [( bd³ ÷12 )+A2h2²]

 Ixx2 = [( 10×230³ ÷12 )+ {2300 × (0)²}]

        = [(10,139,166.67) + {0}]

        = 10,139,166.67 mm

        = 10.139× 10⁶mm


c. Ixx3 = [IG3 + A3h3²]

 Where IG3 is the MI of the rectangle EHIJ about its local X3-axis.

The formula for MI of rectangle = IG3= [ bd³ ÷12]

    So, Ixx3 = [( bd³ ÷12 )+A3h3²]

    Here, b = width of the rectangle EHIJ = 80mm.

              d= depth of rectangle EHIJ = 10mm.

             h3= [ Ӯ - Y3]

                = [ 125mm. - 5mm.]

                = 120mm.


 Ixx3 = [( bd³ ÷12 )+A3h3²]

 Ixx3 = [( 80×10³ ÷12 )+ {800 × (120)²}]

        = [(6666.67) + {11,520,000}]

        = 11,526,666.67mm

        = 11.527× 10⁶mm


Note: You might have observed that Ixx1 =Ixx3. As the given C-section is symmetrical on either side of the X-axis, Ixx1 will be equal to Ixx3. In such cases, there is no need to calculate Ixx3.

Iₓₓ = [Ixx1 + Ixx2 + Ixx3]
Iₓₓ = [{ 11.527× 10⁶mm  + 10.136 × 10⁶mm  +  11.527× 10⁶mm ]

Iₓₓ = 33.19 × 10mm


2. Moment of inertia of I-section about Y-axis

              Iyy = [Iyy1 + [Iyy2 + I yy3]

Where Iyy👉 Moment of inertia of   rectangle ABCD about Y-axis

           Iyy👉 Moment of inertia of rectangle BEFG about Y-axis.

           Iyy3 👉 Moment of inertia of  rectangle EHIJ about Y-axis

Let us draw the local axes Y1Y1, Y2Y2, & Y3Y3 passing through the CG of rectangles ABCD, BEFG, & EHIJ as shown below.




As all these three axes are parallel to the Y-axis, we shall use the parallel axis theorem to calculate MI.

  a.  Iyy1 = [IG1 + A1h1²]

       Where IG1 is the MI of the rectangle ABCD about its local Y1-axis.

     The formula for MI of rectangle = IG1= [ db³ ÷12]

    So, Iyy1 = [( db³ ÷12 )+A1h1²]

    Here, b = width of the rectangle ABCD = 80mm.

              d= depth of rectangle ABCD = 10mm.

             h1= [X1 - ]

                = [40mm. - 19.36mm.]

                = 20.64mm.


 Iyy1 = [( db³ ÷12 )+A1h1²]

 Iyy1 = [( 10×80³ ÷12 )+ {800 × (20.64)²}]

        = [(426,666.67) + {340807.68}]

        = 767,474.346 mm4

        = 7.674× 10mm


a.  Iyy2 = [IG2 + A2h2²]

       Where IG2 is the MI of the rectangle BEFG about its local Y2-axis.

     The formula for MI of rectangle = IG2= [ db³ ÷12]

    So, Iyy2 = [( db³ ÷12 )+A2h2²]

    Here, b = width of the rectangle BEFG = 10mm.

              d= depth of rectangle BEFG = 230mm.

             h2= [ 艾 - X2]

                = [19.36mm. - 5mm.]

                = 14.36mm.


 Iyy2 = [( db³ ÷12 )+A2h2²]

 Iyy2 = [( 230×10³ ÷12 )+ {2300 × (14.36)²}]

        = [(19,166.67) + {474,282.08}]

        = 493448.746 mm4

        = 4.934× 10mm


a.  Iyy3 = [IG3 + A3h3²]

       Where IG3 is the MI of the rectangle EHIJ about its local Y3-axis.

     The formula for MI of rectangle = IG3= [ db³ ÷12]

    So, Iyy3 = [( db³ ÷12 )+A3h3²]

    Here, b = width of the rectangle EHIJ = 80mm.

              d= depth of rectangle EHIJ = 10mm.

             h3= [X3 - ]

                = [40mm. - 19.36mm.]

                = 20.64mm.


 Iyy3 = [( db³ ÷12 )+A3h3²]

 Iyy3 = [( 10×80³ ÷12 )+ {800 × (20.64)²}]

        = [(426,666.67) + {340807.68}]

        = 767,474.346 mm4

        = 7.674× 10mm


Note: You might have observed that Iyy1 =Iyy3. Here, the local Y1 axis overlaps the Y3 axis. Rectangle ABCD & EHIJ have similar breadth & depth. In such cases, there is no need to calculate Iyy3.

Iyy = [Iyy+ Iyy2 + Iyy3]
Iyy = [{7.674× 10mm + 4.934× 10mm  + 7.674× 10mm ]

Iyy= 20.282× 10mm

Thank you for going through these calculation steps. Have a good day 😄.


Share:

No comments:

Post a Comment

Translate

Blog Archive

popular posts

Recent Posts

Google search